
CSCC43 Week 2-3 Notes
1

Simplifications:
- While learning relational algebra, we will assume the following:

- Relations are sets, so now two rows are the same.
- Every cell has a value.

- In SQL, we will drop these assumptions.
- But for now, they simplify our queries.

Relational Algebra Basics:
- Relational algebra is an algebra whose operands are relations or variables that

represent relations. Furthermore, operators are designed to do the most common things
that we need to do with relations in a database. The result is an algebra that can be
used as a query language for relations.

- In relation algebra, operands are tables and operators are what we can do with those
tables.
Some operators are:

- Select
- Project
- Cartesian Product
- Joins

Select:
- Used for selecting rows based on some condition.
- Notation: σc(R)
- R is a table.
- Condition c is a boolean expression. It can use comparison operators and boolean

operators. The operands are either constants or attributes of R.
- The result is a relation with the same schema as the operand but with only the tuples

that satisfy the condition.
- E.g. Consider the relation below:

If I do σbar=“Joe’s”(Sells), the output or result is:

CSCC43 Week 2-3 Notes
2

- E.g. Consider the schema below:

To find all British actors, I will do the following query: σnationality=“British”(Artists).
To find all the movies from the 1970s, I will do the following query:
σyear≥1970 Λ year<1980 (Movies).

Project:
- Used for selecting columns based on some condition.
- Notation: πL(R)
- R is a table.
- L is a subset, not necessarily a proper subset, of the attributes of R.

I.e. L is a list of attributes that are in R. It could be 1 column or all the columns.
- The result is a relation with all the tuples from R but with only the attributes in L, and in

that order.
- It’s called project because it gets the columns.
- Note: The outcome of the project operator is a set, and thus, there can be no duplicate

values.
E.g. Consider the relation below and the query πdirector(Movies):

The output of the above query is:

Director

Kubrick

Altman

Polanski

Lucas

CSCC43 Week 2-3 Notes
3

- E.g. Consider the schema below:

To find the names of all directors of movies from the 1970s, I will do the following query
πdirector(σyear≥1970 Λ year<1980(Movies)). This is called a nested query.

- E.g. Consider the relation below and the query πbeer,price(Sells):

The result relation is:

Cartesian Product:

- Notation: R1 x R2
- The result is a relation with every combination of a tuple from R1 concatenated to a tuple

from R2.
- Its schema is every attribute from R followed by every attribute of S, in order.
- Suppose there are m attributes in R1 and n attributes in R2. Then, R1 x R2 has m*n

tuples.
- Note: If an attribute occurs in both relations, it occurs twice in the result prefixed by

relation name.
E.g. Consider the relations below and the query R1 x R2:
R1

A B

1 2

3 4

CSCC43 Week 2-3 Notes
4

R2

The result is:

- Note: Projecting onto fewer attributes can remove what it was that made two tuples
distinct. This is because wherever a project operation might “introduce” duplicates, only
one copy of each is kept.
E.g. Consider the relation below and the query πage(People):

The result of the query is

- Cartesian product can be inconvenient as it can introduce nonsense tuples.

Natural Join:
- Notation: R ⋈ S
- The result is defined by:

- Taking the Cartesian product.
- Selecting to ensure equality on attributes that are in both relations (as determined

by name).
- Projecting to remove duplicate attributes.

B C

3 5

4 7

A R1.B R2.B C

1 2 3 5

1 2 4 7

3 4 3 5

3 4 4 7

CSCC43 Week 2-3 Notes
5

- Some properties of natural joins are:
1. Commutative: R ⋈ S = S ⋈ R

Although attribute order may vary.
This will matter later when we use set operations.

2. Associative: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
So when writing n-ary joins, brackets are irrelevant.
We can just write: R1 ⋈ R2 ⋈ . . . ⋈ Rn

- Note: If R and S don’t have share any attribute(s) with the same name, then R ⋈ S will
be the same as R x S.

- E.g. Consider the relations below and the query R ⋈ S:
R

S

The result is:

Here, since R and S don’t share an attribute with the same name, R ⋈ S is the same as
R x S.

A B

1 2

2 3

C D

5 6

7 9

A B C D

1 2 5 6

1 2 7 9

2 3 5 6

2 3 7 9

CSCC43 Week 2-3 Notes
6

- E.g. Consider the relations below and the query R ⋈ S:
R

S

The result is:

- E.g. Consider the relations below and the query R ⋈ S:
R

S

The result is:

Here, because R.Number doesn’t have 2 and S.Number doesn’t have 3, both rows get
omitted from the result.

Number Square

1 1

2 4

Number Cube

1 1

2 8

Number Square Cube

1 1 1

2 4 8

Number Square

1 1

3 9

Number Cube

1 1

2 8

Number Square Cube

1 1 1

CSCC43 Week 2-3 Notes
7

- E.g. Consider the relations below and the query Sells ⋈ Bars:

The result is:

- E.g. Consider the relations below and the question “How many tuples are in Artists ×

Roles?”:

The answer is 24. There are 4 tuples in Artists and 6 in roles. 4*6 = 24.

Now, with the same 2 relations from above, the answer to the question “How many
tuples are in Artists ⋈ Roles?” is 6. There will be 2 rows with an aID of 1, 2 rows with an
aID of 2, 1 row with an aID of 3 and 1 rot with an aID of 4.

CSCC43 Week 2-3 Notes
8

- E.g. Consider the relations below. What is the result of:
πaName(σdirector=”Kubrick”(Artists ⋈ Roles ⋈ Movies))?

The answer is:

- Here are 3 special cases for natural join:
1. No tuples match:
- In this case, the result is a relation with no tuples.
- E.g.

In this example, both relations have the Dept attribute, but no tuples match.
Hence, the result of Table_1 ⋈ Table_2 would be a table with no tuples.

Nicholson

Stone

CSCC43 Week 2-3 Notes
9

2. Exactly the same attributes:
- In this case, we’re looking for tuples that are exactly the same in both tables.
- E.g.

Here, the result would be:

This is because only the above 2 rows are in both tables.
3. No attributes in common:
- As mentioned previously, the result of this would be the cartesian product of the

two tables.
- Natural joins can over-match.

Natural join bases the matching on attribute names, but what if two attributes have the
same name, and we don’t want them to have to match?

- Natural joins can also under-match.
What if two attributes don’t have the same name and we do want them to match?

Theta Join:
- It’s common to use σ to check conditions after a Cartesian product.

Theta Join makes this easier.
- Notation: R ⋈condition S
- The result is the same as the Cartesian product followed by select.

In other words, R ⋈condition S = σcondition(R × S).
- The word “theta” has no special connotation. It is an artifact of a definition in an early

paper. You save just one symbol.
- You still have to write out the conditions, since they are not inferred.

Precedence:
- Expressions can be composed recursively.
- It helps to annotate each subexpression, showing the attributes of its resulting relation.
- Parentheses and precedence rules define the order of evaluation.
- The precedence, from highest to lowest, is:

- Unless very sure, use brackets.

Artist Name

1868 Angelina Jolie

5555 Patrick Stewart

CSCC43 Week 2-3 Notes
10

Breaking down expressions:
- Complex nested expressions can be hard to read.
- There are two alternative notations allow us to break them down:

1. Expression trees:
- Leaves are relations.
- Interior notes are operators.
- E.g.

2. Sequences of assignment statements:
- We can use assignment operators.
- With assignment operators, we assign an expression to a relation.
- Notation: R := Expression
- Alternate notation: R(A1, ..., An) := Expression

With this notation, we can rename the column names from the expression.
I.e. This notation lets you name all the attributes of the new relation.
Note: The number of columns from the expression must match the number of
columns we put in the LHS.

- Note: R must be a temporary variable, not one of the relations in the schema.
I.e. You are not updating the content of a relation.

- E.g.

- Whether/how small to break things down is up to you. It’s all for readability.
- Assignment helps us break a problem down.
- It also allows us to change the names of relations and attributes.

Rename:
- Notation: ρR1(R2) or ρR1(A1, ..., An)(R2)

The second way lets you rename all the attributes as well as the relation.
- Note that these are equivalent:

R1(A1, ..., An) := R2
R1 := ρR1(A1, ..., An)(R2)

- ρ is useful if you want to rename within an expression.
Union:

- Notation: R U S
- It includes all tuples that are in tables R or S. It also eliminates duplicate tuples.
- For a union operation to be valid, the following conditions must hold:

- R and S must be the same number of attributes.

CSCC43 Week 2-3 Notes
11

- The attribute names of R has to match with the attribute names in S.
- The attribute domains need to be compatible.
- Duplicate tuples should be automatically removed.

- E.g. Consider the following relations and the query A U B:

The result is:

Intersection:

- Notation: R ∩ S
- It includes all tuples that are in both tables R and S.
- For an intersection operation to be valid, the following conditions must hold:

- The attribute names of R has to match with the attribute names in S.
- R and S should be union compatible.
- The result is a relation of all the tuples in both R and S.

- E.g. Consider the following relations and the query A ∩ B:

The result is:

Difference:

- Notation: R - S
- It includes all tuples that are in table R but not in S.
- For a difference operation to be valid, the following conditions must hold:

CSCC43 Week 2-3 Notes
12

- The attribute names of R has to match with the attribute names in S.
- R and S should be union compatible.
- The result is a relation of all the tuples in R but not in S.

- E.g. Consider the following relations and the query A - B:

The result is:

Left Outer Join:

- Notation: R⋈LS
- The left outer join operation allows keeping all tuples in the left relation. However, if no

matching tuple is found in the right relation, then the attributes of the right relation in the
join result are filled with null values.

- E.g. Consider the relations below and the query R⋈LS:
R

S

The result is:

Number Square

1 1

3 9

Number Cube

1 1

2 8

Number Square Cube

1 1 1

CSCC43 Week 2-3 Notes
13

Right Outer Join:

- Notation: R⋈RS
- The right outer join operation allows keeping all tuples in the right relation. However, if no

matching tuple is found in the left relation, then the attributes of the left relation in the join
result are filled with null values.

- E.g. Consider the relations below and the query R⋈RS:
R

S

The result is:

Full Outer Join:
- Notation: R⋈OS
- In a full outer join, all tuples from both relations are included in the result, irrespective of

the matching condition.
- E.g. Consider the relations below and the query R⋈OS:

R

S

3 9 -

Number Square

1 1

3 9

Number Cube

1 1

2 8

Number Square Cube

1 1 1

2 - 8

Number Square

1 1

3 9

Number Cube

1 1

2 8

CSCC43 Week 2-3 Notes
14

The result is:

Division:
- Notation: R/S
- It is used when we wish to express queries with “all” or “every”.
- For integers, A/B is the largest int Q st Q x B ≤ A .
- For relations, A/B is the largest relation Q st Q × B ⊆ A.
- It is another “convenience” operator. But if you need it, it is a huge convenience.

Defining a query without it is complicated.
Summary of operators:

Note: Some operations are not necessary. You can get the same effect using a combination of
other operations. An example of this is theta join. We call this syntactic sugar.
Expressing Integrity Constraints:

- We’ve used this notation to express inclusion dependencies between relations R1 and
R2: R1[X] ⊆ R2[Y].
Recall that the attributes in X must be a subset of the attributes in Y.

- We can use relational algebra to express other kinds of integrity constraints.
- Suppose R and S are expressions in relational algebra. We can write an integrity

constraint in either of these ways:
1. R = ∅
2. R ⊆ S (equivalent to saying R - S = ∅)

Number Square Cube

1 1 1

2 - 8

3 9 -

CSCC43 Week 2-3 Notes
15

Summary of techniques for writing queries in relational algebra:

- Approaching the problem:
- Ask yourself which relations need to be involved. Ignore the rest.
- Every time you combine relations, confirm that:

1. Attributes that should match will be made to match and
2. Attributes that will be made to match should match.

- Annotate each subexpression, to show the attributes of its resulting relation.
- Breaking down the problem:

- Remember that you must look one tuple at a time.
If you need info from two different tuples, you must make a new relation where
it’s in one tuple.

- Use the assignment operator to define intermediate relations.
- Use good names for the new relations.
- Name the attributes on the LHS each time, so you don’t forget what you

have in hand.
- Add a comment explaining exactly what’s in the relation.

Specific types of query:
- Max (min is analogous):

- Pair tuples and find those that are not the max.
- Then subtract from all to find the maxes.

- “k or more”:
- Make all combinations of k different tuples that satisfy the condition.

- “exactly k”:
- “k or more” - “(k+1) or more”.

- “every”:
- Make all combos that should have occurred.
- Subtract those that did occur to find those that didn’t always. These are the

failures.
- Subtract the failures from all to get the answer.

Relational Algebra is procedural:
- A relational algebra query itself suggests a procedure for constructing the result.

I.e. It describes how one could implement the query.
- We say that it is procedural.

Evaluating queries:
- Any problem has multiple RA solutions.

- Each solution suggests a “query execution plan”.
- Some may seem more efficient than others.

- In RA, we won’t care about efficiency; it’s an algebra.
- However, in a DBMS, where queries actually are executed, efficiency matters.

- Which query execution plan is most efficient depends on the data in the database
and what indices you have.

- Fortunately, the DBMS optimizes our queries.
- We can focus on what we want, not how to get it.

I.e. Even if we write the queries in a very non-optimized way, the DBMS will
optimize it for us.

Relational Calculus:
- Another abstract query language for the relational model.
- Based on first-order logic.
- RC is “declarative”. The query describes what you want, but not how to get it.
- Queries look like this: {t|t ε Movies ∧ t[director] = “Scott”}

CSCC43 Week 2-3 Notes
16

Examples:
Here is the schema:

- Queries:

Write a query for each of the following:
1. Student number of all students who have taken csc343.

Soln:
πSID(𝜎dept = “CSC” and cNum = 343(Took ⋈ Offering))

2. Student number of all students who have taken csc343 and earned an A+ in it.

Soln:
Took_CSC343(SID) := πSID(𝜎dept = “CSC” and cNum = 343(Took ⋈ Offering))
Got_A+(SID) := πSID(𝜎grade >= 90(Took))
Took_CSC343_And_GotA+(SID) := TookCSC343(SID) ⋂ GotA+(SID)

3. The names of all such students.

Soln:
Took_CSC343(SID) := πSID(𝜎dept = “CSC” and cNum = 343(Took ⋈ Offering))
Got_A+(SID) := πSID(𝜎grade >= 90(Took))
Took_CSC343_And_GotA+(SID) := TookCSC343(SID) ⋂ GotA+(SID)
πsurName, firstName(Took_CSC343_And_GotA+ ⋈ Students)

4. The names of all students who have passed a breadth course with Professor
Picky.

Soln:
SID(sid) := πsid(𝜎grade ≥ 50 and instructor = ‘Picky’ and breadth = True(Took⋈Offering⋈Course))
Answer(surName, firstName) := πsurName, firstName(SID ⋈ Student)

5. sID of all students who have earned some grade over 80 and some grade below
50.

Soln:
SID_Over_80(SID) := πSID(𝜎grade > 80(Took))
SID_Under_80(SID) := πSID(𝜎grade < 50(Took))
SID_Over_80 ⋂ SID_Under_80

CSCC43 Week 2-3 Notes
17

6. Terms when Cook and Pitassi were both teaching something.

Soln:
Cook_Term(term) := πterm(𝜎instructor = “Cook”(Offering))
Pitassi_Term(term) := πterm(𝜎instructor = “Pitassi”(Offering))
Cook_Term ⋂ Pitassi_Term

7. Terms when either of them was teaching csc463.

Soln:
Cook_Term(term) := πterm(𝜎dept = “csc” and cNum = 463 and instructor = “Cook”(Offering))
Pitassi_Term(term) := πterm(𝜎dept = “csc” and cNum = 463 and instructor = “Pitassi”(Offering))
Cook_Term U Pitassi_Term

8. sID of students who have earned a grade of 85 or more, or who have passed a
course taught by Atwood.

Soln:
85_or_more(SID) := πSID(𝜎grade >= 85(Took))
Passed_Atwood(SID) := πSID(𝜎grade >= 50 and instructor = “Atwood”(Took ⋈ Offering)
85_or_more U Passed_Atwood

9. Terms when csc369 was not offered.

Soln:
All_Term(Term) := πTerm(Offering)
CSC369_Offered_Terms(Term) := πTerm(𝜎dept=”CSC” and cNum=369(Offering))
All_Term - CSC369_Offered_Terms

10. Department and course number of courses that have never been offered.

Soln:
All_Courses(Dept, cNum) := πdept, cNum(Course)
Offered_Courses(Dept, cNum) := πdept, cNum(Offering)
All_Courses - Offered_Courses

11. SIDs and surnames of all pairs of students who’ve taken a course together.

Soln:
-- T1 and T2 are the same as Took.
T1 := ρT1(Took)
T2 := ρT2(Took)

-- Gets pairs of sids s.t. they are taking the same class.
-- Note: We use T1.sid < T2.sid and not T1.sid != T2.sid because we don’t want
-- duplicates. I.e. If student A and B are taking the class together, and we have
-- A.sid and B.sid, we don’t also want B.sid and A.sid.
Pairs(sid1, sid2) := πT1.sid, T2.sid(𝜎T1.sid < T2.sid and T1.oid = T2.oid(T1 x T2))

-- Gets the surname of the first student.
FirstName(sid1, sid2, name1) := πsid1, sid2, surname(𝜎sid1 = sid(Pairs x Student))

-- Gets the surname of the second student.
πsid1, sid2, name1, surname(𝜎sid2 = sid(FirstName x Student))

CSCC43 Week 2-3 Notes
18

12. sID of student(s) with the highest grade in csc343, in term 20099.

Soln:
Takers(sid, grade) := πsid, grade(Took ⋈dept=“CSC” and cNum=343 and term = 20099 Offering)
NotTop(sid) := πT1.sid(𝜎T1.grade < T2.grade(ρT1Takers x ρT2Takers))
Answer(sid) := πsid(Takers) - NotTop

13. sID of students who have a grade of 100 at least twice.

Soln:
Answer(sid) := πT1.sid(𝜎T1.sid == T2.sid and T1.oid != T2.oid and T1.grade=100 and T2.grade=100(ρT1Took
x ρT2Took))

14. sID of students who have a grade of 100 exactly twice.

Soln:
At_Least_Twice(sid) := πT1.sid(𝜎T1.sid = T2.sid and T1.oid != T2.oid and T1.grade=100 and

T2.grade=100(ρT1Took x ρT2Took))
At_Least_Thrice(sid) := πT1.sid(𝜎T1.sid = T2.sid = T3.sid and T1.oid != T2.oid and T1.oid != T3.oid and

T2.oid != T3.oid and T1.grade=100 and T2.grade=100 and T3.grade-100(ρT1Took x ρT2Took x ρT3Took))
Answer(sid) := At_Least_Twice - At_Least_Thrice

Note: Since != isn’t transitive, we can’t do T1.oid != T2.oid != T3.oid.

15. sID of students who have a grade of 100 at most twice.

Soln:
Answer(sid) := πsid(Student) - At_Least_Thrice

16. Department and cNum of all courses that have been taught in every term when
csc448 was taught.

Soln:
448Terms(Term) := πterm(σdept=“CSC” and cNum=448Offering)
DidHappen(dept, cNum, term) := πdept, cNum, term(Offering)
ShouldHappen(dept, cNum, term) := πdept, cNum(DidHappen) x 448Terms
Didn’tHappen(dept, cNum, term) := ShouldHappen - DidHappen
Answer(dept, cNum) := πdept, cNum(DidHappen) - πdept, cNum(Didn’tHappen)

17. Name of all students who have taken, at some point, every course Gries has
taught (but not necessarily taken them from Gries)

Soln:
CoursesByGries(dept, cNum) := πdept, cNum(σinstructor=“Gries”Offering)
ShouldHappen(sid, dept, cNum) := πsidStudent x πdept, cNumCoursesByGries
Didn’tHappen(sid) := πsidStudent - πsidShouldHappen
Answer(surName, firstName) := πsurName, firstName((πsid(Student)-Didn’tHappen)
⋈ Student)

CSCC43 Week 2-3 Notes
19

- Integrity Constraints:
Express the following constraints using the notation R = ∅ or R - S = ∅:

1. Courses at the 400-level cannot count for breadth.

Soln:
𝜎cNum >= 400 and cNum < 500 and Breath = True(Course) = ∅

2. CSC490 can only be offered at the same time as CSC454.

Soln:
490Terms(Term) := πTerm(𝜎dept = “CSC” and cNum = 490(Offering))
454Terms(Term) := πTerm(𝜎dept = “CSC” and cNum = 454(Offering))
490Terms - 454Terms = ∅

